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Convolutional Codes Based on
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The performance of a coding system consisting of a convolutional encoder and a
Viterbi decoder can be analytically found by the well-known transfer function bounding
technique. For the partial-unit-memory byte-oriented convolutional encoder with m,
binary memory cells and k,, (> m, ) inputs, a state diagram of 2%o0 states has been used
for the transfer function bound. In this article, it is shown that a reduced state diagram
of (2Mo + 1) states can be used for easy evaluation of transfer function bounds for

partial-unit-memory codes.

I. Introduction

A class of convolutional codes called unit-memory byte-
oriented convolutional codes (UM codes) was introduced by
Lee (Ref. 1) and Lauer (Ref. 2). The encoder structure of an
(m,, k,/n,) UM code is shown in Fig. 1, where m,, is the
number of binary memory cells, k,, is the number of inputs,
and n,, is the number of outputs. The code rate r of this UM
code is k,/n,. UM codes with m, <k, are called partial-UM
codes (PUM codes) (Ref. 2). For consistency in terminology,
we will call UM codes with m, = k,, ful-UM codes (FUM
codes).

In Ref. 1, it was shown that FUM codes are superior to con-
ventional convolutional codes in the sense of having larger free
distances for given pairs of m, and 7. In Ref. 2, PUM codes are
shown to be even better than FUM codes in the same sense.
Also, as inner codes for the concatenated coding systems with
Reed-Solomon (RS) outer codes, FUM codes were shown to

70

be better than conventional convolutional codes, due to their
byte-oriented natures (Refs, 1 and 3). For sxample, it was
shown (Ref. 3) that, with a 6-bit RS outer code and convolu-
tional inner codes with m, = 6 and r= 1/3, the use of FUM
code can save 0.3 dB in required signal-to-noise ratio over the
use of conventional convolutional code for a given perfor-
mance. For the same applications, we expect that PUM codes
will be'more useful since we can employ larger symbol size
RS codes with inner codes of small complexities (e.g., 8-bit RS
code and (5, 8/n,) PUM code).

The performance of a coding system employing a convolu-
tional encoder and a Viterbi decoder can be analytically evalu-
ated by the transfer function bound (TFB) based on the corre-
sponding state diagram (SD) for that code (Refs. 4 and 5).
However, for an (m,, k,/n,) PUM code, the TFB should be
evaluated from a SD of 2¥o states, and hence the inversion of
a (20 - 1) X (2%0 - 1) matrix is required. The purpose of this



report is to present a reduced state diagram of (2" o + 1) states
to reduce the required computational burden for the evalua-
tion of TFB.

Il. Preliminaries

This section briefly reviews the encoder structure and the
state diagram (SD) for the evaluation of transfer function
bound (TFB) for FUM codes, Readers who are not familiar
with TFB are referred to Ref, 4 or Ref, 5.

The encoder structure of an (m,, k,/n,) UM code is
shown in Fig. 1. The (%, +m,)-input to n,-output connec-
tion box including #, mod-2 adders is often represented
by an n,X (k, +m,) binary matrix G, called a code gener-
ator matrix. The nth bit in the #th output vector, y?,

n=12,..., n,,t=12,...,is then
ko m,

yo= E G(n,k)-xi@E Gn k, +k)+x71 (1)
k=1 k=1

where 2 and @ represent the mod-2 summations and
x, € (0,1), for k=12, ..., k,, and £=12, ... (xg =0,
k=12,...,m,, by convention).

First, consider FUM codes with m, =%,. We define the
“present state’ at time ¢, S7, as

The “next state” at time # is then S**1, Notice that the num-
ber of possible states is 2o (= M,), regardless of the number
of outputs n, and the time z. Define the state space, &, as

& = {so,sl,...,le_l}

where

s, = (xl,xz,...,xk )

with

~
|

ko

= . kO_k
2 %+ 2
k=1

for any time ¢.

The SD for TFB of this (%,, k,/n,) FUM code consists of
M, nodes, and M7 directed branches with associated branch
metrics, Node 7 represents the state s;, and the directed branch
from node i to node j represents the transition from state s, to
state 5;,, The branch metric on the directed branch from node i
to node j, m(i, f), is given by

0, I, .
m(i,j) = DD ZH D) (2)

where the values of H?’s depend on the code generator G and
the type of channel to be used, and the values of H?’s depend
on the type of performance measure of interest. Here, for
the type of channel we will consider only the binary-input
symmetric-output (BISO) channel, and for the type of perfor-
mance measure we will consider the bit error rate (BER) and
the M, (= 2¥o)-ary symbol error raté (SER). For the BISO
channel, the HO’s in Eq, (2) are then

nO
HOG, ) = ) >, (1)
n=1
where y,,(, /) is the y?, in Eq. (1) with (¢~ x571,..., xf1) =
$; and (xf, x5,..., xk,) = 5. That is, HO(i, /) is the binary
Hamming weight of the corresponding output vector. The
H'’s in Eq. (2) when using the BER criterion, HL’s, are then

(number of 1’s in the next state s/)

e N =
HB(I’]) - x
]

ie., H, (i, j) is the normalized binary Hamming weight of the

corresponding input vector, Likewise, the H?’s in Eq. (2) for
M, -ary SER, H’s, are

HLG,7) = 0,iff = 0

1, otherwise

or HL(i, f) is the M -ary Hamming weight of the corresponding
input symbol.

From the SD described, we find the transfer function
T(D, Z) as (Refs. 4 and 5)

TD,Z) =B+ (-4 .C

where I is the (M, - 1) X (M, ~ 1) unit matrix, and the
(M, - 1) X (M; - 1) matrix 4, the (M, - 1)-dimensional row
vector B, and the (M, - 1)-dimensional column vector C are
obtained from the SD for i= 1,2, <o, M -landj=12,...,
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M, - 1, by A, j) = m(i, ), BG) = m(0, ), and C(¥) = m(i, 0).
Then with

> 9B
5z [D.2) = 37

(-4t .cC
(oA, 94
+ B (I-A4) 57 (- 4) C

the TFB for BER and SER can be found as

0
BER < e, * EETB(D’Z)
p=D_ , z=|
and
SER < ¢+ 2=T.(D,2)
o oZ sV
p=D, , z=|

where D, is the union Bhattacharyya distance of the coding
+channel (everything inside the encoder-decoder pair) and the
constant ¢, depends on the type of coding channel and the
code. For example, when we use the binary antipodal signaling
over an additive white Gaussian noise channel with no channel
output quantization, D, and ¢, are given by (Ref. 5)

ES
D, = exp "N

o

Es Es
Co—Q 2’df"Fo * exp df"ﬁo'

where N, is the one sided noise spectral density, £, is the
received signal energy per channel bit, dris the free distance of
the code, and

and

0= [Tow (5) £

An illustrating example is shown in Fig. 2. Figure 2(a)
shows the encoder structure of a (2, 2/3) FUM code including
the code connections. The code generator matrix G is then

1 1 0 1
G=1|1 01 1
1 010
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Its SD when using the BER criterion is shown in Fig. 2(b).
From this, we have

B = [D 705 p3gz05 p2 Z]

D? D 7205 p 705 p2y7
c=|p*l, 4=|p*2*% D 2°% 2z
D> D 2°5 D z2°% D2z

And it is easy to show

oT,

) _05D*+2D*+1.5D5-3D%-D" +4 D8
Y4

z=1 (1-3D+D?+D*?

If the SER is the performance measure of interest, then the
corresponding SD is exactly the same as Fig. 2(b) but with
Z°-5 replaced by Z. This gives

_D¥+2D%+3D%-5D%-2D" +5D% - D10
z=1 (1-3D+D%+D%?

Il. Reduced State Diagram for TFB of
PUM Codes

The transfer function bounding technique described in the
previous section is valid when only one transition exists from
a given state to another state, In other words, each encoder
input requires at least one memory cell. Hence, the perfor-
mance of an (m,,, k,/n,) PUM code can be found by introduc-
ing (k, - m,) dummy binary memory cells and by treating all
of that as a (k,, k,/n,) FUM code. For an illustrating exam-
ple, a (1, 2/3) PUM code with one dummy memory cell is
shown in Fig. 3(a). The corresponding SD of 4 states is shown
in Fig. 3(b). From this, we have

B = [Dz 705 p2z0s 2 Z_

1 D2 ZO.S D‘Z ZO.S DZ Z%
c=|D|, 4=|D¥2° D 2°% D Z
D p3z°5 p z°% D Z

and




Ty _0.5D*-05D°+2D*+2D%- 4D% +2D°
0Z | 5y (1- 2D-D? +2D? - 2 D5)?
(3)
and
Ty _D*-2D*+4D*+4D5 - 8D° +4D°
0Z | z=4 (1- 2D- D*+2D% - 2 D)
@

Notice in Fig. 3(b) that m(0, ))=m(1, j) and m(2, /)=
m(3, j) for all j. In general, for any (m,, k,/n,) PUM code,
since there are no connections from the last (k, - m,) dummy
binary cells, m(i,, /) = m(i,, /) for any j, if the first m, ele-
ments in s;, are identical to those in s;;,. This observation is
the key for reducing the number of necessary states in the SD
for the TFB.

Let M,= 27o(< M[2) and M, =M M, = 2ko—mo
(>2). Since the number of actually working memory cells is
m,, one may naturally consider that the number of necessary
states is M, . That is, one may define the “present state” of the
PUM code at time 2, S%, as

1
Lxh
» mo Y

regardless of the values of xf7 sy, .., X[}, and the corre-

sponding state space as;

F= 5550y ) ()
where
Et = (xl’xZ’ ’xmo)
with
m
o
-k
i= Z X, 2o (6)
k=1

In other words, one may define 5, instead of defining s;,,, 5
SiabMyr1s 2 St My+My-1 without distinction. The SD on this
state space & for any purpose has M, nodes and My X M g

directed branches, where node i represents the state s, and the.

M directed branches from node 7/ to node j represent the
transitions from state s, to state s;. In Ref. 2, this state space
& with M, states was used for finding free distances of
PUM codes.

However, for TFB, we can not use this & directly, We may
use 5;’s for i = 1,2,..., M, ~ 1, but we have to be careful
about s,. That is, we have to distinguish g;s, i=1.2,...,
M, -1 from s,, since nonzero inputs can cause transitions
with nonzero outputs from s, i=0,1,..., M3~ 1, to s,
j=12,..., My~ 1, although the contents of actually work-
ing memories are all 0’s. Hence, if we represent s, by s, then
we require another state, say sy, in order to represent §;’s,
i=12,...,M3-1. Asa result, we require the state space
& of (M, + 1) states as depicted by

~

F= {s, S Sy 8y v 2 Sarym }

where Ei’s are defined asin (5) and (6) fori=1,2,...
and

:Mz" 1,

5, = 00,...,0)With Gy yps- -5 %,) = (0,....0)
Sy = (00, ,0)with (%, yys-os %)) # (0,...,0)

Now, we can define the reduced SD (RSD) for the TFB of
an (m,, k,/n,) PUM code, which consists of (M, + 1) nodes
and (M, +1)? directed branches with branch metrics defined
fori=0,1,2,...,M,-1,as

m(i,0) = m@ + M,,0)

My~1
m@, 0 = Y m(-M,,v)
v=1
M-
m@j) = z m(z'Ms,J-M3+v), J=12,...,M,-1
v=0
and
m(©,7) = mO.0, §=0012. ..M~ 1
And the corresponding transfer function T(D, Z) is then
T(D,Z) = B+ (I-A) ' C
where T is the M, X M, unit matrix, and for { = 0,12, ...,
My~ 1, and j = 0,12,..., My-1, &G, /) = mG, ),

B(j) =m(0,7), and C(@) = m(i, 0).
For the (1, 2/3) PUM code in Fig. 3(a), the RSD for the

TFB using the BER criterion is shown in Fig. 3(c). From this
RSD we see that
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= D2 ZO.S D2 AL +D2 Z]

-

IV. Conclusions and Discussion

For (m,, k,/n,) PUM codes, the reduced SD’s of (2™ + 1)
states for TFB’s were presented. The TFB’s for BER and SER

types of channels and/or for other performance criteria may
also be of interest. For example, one may want to use
M(=2"°)-ary orthogonal input, symmetric output chahnel.
For another example, one may want to use mean square error
for the performance criterion for %,-bit representations of

= [ p2z08 p2 7054 p? Z] criteria with BISO channel were described. TFB’s with other

| D*2% D 2°+D z

And the resulting expressions for (0 SI_‘B/BZ)|2=1 and (az‘;/ certain quantities. For these cases with PUM codes, the corre-
0Z)|-, are exactly the same as the right-hand sides of Egs. sponding TFB’s may also be found based on the reduced SD of

(3) and (4).
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(20 + 1) states.
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Qe+ 0O (o]

Os+++0

(k°+m°)-INPUT
no-OUTPUT

CONNECTION
BOX

(-»D-» : BINARY MEMORY CELL; : ;@-» : MOD-2 ADDER )

Fig. 1. Encoder structure of (m,, k,/n,) UM code
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(a)

(b)

Fig. 2. Example of a (2,2/3) FUM code: (a) encoder structure of a
(2,2/3) FUM code; (b) SD of the above code for BER with BISO
channel
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Flg. 3. Example of a (1,2/3) PUM code: (a) encoder structure of a
(1,2/3) PUM code; (b) usual SD of the above code for BER with BISO
channel; (¢) reduced SD of the above code for BER with BISO

channel




